# Effect of neighbouring amide group bulkiness on anchimerically assisted ether bond cleavage: Part 7

# Antonio Arcelli,\* Gianni Porzi,\* Samuele Rinaldi and Sergio Sandri

Dipartimento di Chimica 'G. Ciamician', Via Selmi 2, Università di Bologna, 40126 Bologna, Italy

Received 2 June 2003; revised 15 October 2003; accepted 22 October 2003

ABSTRACT: The effect of the bulkiness of the amide group vicinal to the ether bond on the acid hydrolysis rate of substrates 1b-d was investigated. The kinetic data showed that increased bulkiness of the acyl group has a considerable effect on the reaction rate, accelerating the anchimerically assisted hydrolytic process of the ether bond. A different mechanism is proposed for 1d, which is supported by the thermodynamic activation parameters values. The hydrolysis rate of 1d is about  $3 \times 10^5$ -fold higher than that of the reference compound. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: anchimeric assistence; amides; ether cleavage; acid hydrolysis

#### INTRODUCTION

In a continuation of our program aimed at the acidinduced ether cleavage anchimerically assisted by a vicinal amide group, <sup>1–6</sup> we have investigated the effect on the hydrolytic process induced by the change of the R acyl group of the substrate 1 (Scheme 1).

The compounds previously studied, i.e. 1 [R=CH<sub>3</sub> (Ref. 1) or Ph (Ref. 3)], showed that the proton concentration does not have a constant effect on the reaction rate. In fact, at all the temperatures investigated the plots of the pseudo-first-order rate constant ( $k_{\rm obs}$ ) vs [HCl] showed two practically linear regions with different slopes. Below 5 M HCl the acidity increase causes a relatively small increase in  $k_{\rm obs}$ , while a clearly greater reaction sensitivity to [H<sup>+</sup>] is observed above 5 M HCl. We deduced that the greater slope of the plot of  $k_{\rm obs}$  vs [HCl] at acidity values higher than 5 M HCl, is ascribable to a strong increase in the activity coefficient ratio ( $f_{\rm SH^+}/f^{\neq}$ ) at ionic strengths I > 5 M.<sup>3,6</sup>

To investigate the effect of the bulkiness of the amide group vicinal to the ether bond on the acid hydrolysis rate, we have extended the kinetic studies to the substrates **1b–d** synthesized following the procedure described previously for analogous compounds. <sup>1,3</sup>

## **RESULTS AND DISCUSSION**

We report the kinetic measurements accomplished at various temperatures and in the acidity range 4.9–

\*Correspondence to: A. Arcelli and G. Porzi, Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Via Selmi 2, 40126 Bologna, Italy. E-mail: porzi@ciam.unibo.it

Contract/grant sponsor: University of Bologna.

8.6 MHCl, where the plot of the rate constant ( $k_{\rm obs}$ ) vs [HCl] is practically linear, as previously observed also for similar substrates.<sup>1,3</sup>

From the rate constants ( $k_{\rm obs}$ ), calculated by measuring the optical density vs time, for the acid-catalysed hydrolysis of **1b-d** under various experimental conditions (Table 1), the thermodynamic activation parameters were calculated at 50 °C (Table 2) from the linear relationship of  $\ln k_{\rm H^+}$  vs 1/T, where  $k_{\rm H^+}$  is obtained from the slope of the plot of  $k_{\rm obs}$  vs [H<sup>+</sup>] for each temperature (Table 1). The relative rates, calculated at 57.8 °C from  $k_{\rm H^+}$  values, for **1a**, **1b**, **1c** and **1d** are 1:3.5:12:137, respectively. Thus, the point which clearly emerges is that increased bulkiness of the acyl group has a considerably effect on the reaction rate, accelerating the anchimerically assisted hydrolytic process, which is unexpectedly high for the substrate **1d**.

In order to realize the effect of the acyl substituent on the reaction rate, the logarithm of the second-order rate constants at 57.8 °C were plotted against the  $\nu^*$  values calculated by Charton,<sup>7</sup> these parameters taking into account the steric effect of the branching of the alkyl group. For the substrate 1d we observed a meaningful positive deviation from the expected value calculated from the equation  $\log k_{\text{H}^+} = (2.38 \pm 0.02) \nu^* - (5.47 \pm$ 0.02), which fits very well (r = 0.9999 and F = 14260)the other substrates (Fig. 1). A similar linear correlation for 1a-c, but with a negative slope, was found also between log  $k_{\rm H^+}$  and the Taft parameter  $\sigma^*$  (not reported). Further, it should be emphasized that an analogous very good linear correlation between the p $K_{SH^+}$ values (determined as reported in the Experimental section) and  $\nu^*$  was found for **1a–c**, whereas the p $K_{SH^+}$ of 1d showed a considerable deviation also in this case (Fig. 2).

**Scheme 1.**  $R = (1a) CH_3$ ;  $(1b) C_2H_5$ ;  $(1c) CH(CH_3)_2$ ;  $(1d) C(CH_3)_3$ 

We believe that the rate increase observed on going from **1a** to **1d** is not ascribable to the steric acceleration effect (found, for instance, in elimination reactions<sup>8</sup>) because, from the ground state to the transition state, a

**Table 1.** Rate constants and experimental conditions for the acid hydrolysis of **1b**–**d** 

| <i>T</i> ±0.1 (°C) | $(\operatorname{mol} \operatorname{dm}^{-1}) $ $(\operatorname{a})^{\operatorname{a}}$ | $10^3 k_{\rm obs}({\rm s}^{-1})$ |              |              |
|--------------------|----------------------------------------------------------------------------------------|----------------------------------|--------------|--------------|
|                    |                                                                                        | 1b                               | 1c           | 1d           |
| 31.1               | 5.95                                                                                   |                                  |              | 0.61         |
|                    | 7.52                                                                                   |                                  |              | 1.62         |
|                    | 8.71                                                                                   |                                  |              | 2.56         |
| 36.6               | 4.97                                                                                   |                                  |              | 0.50         |
|                    | 5.94                                                                                   |                                  |              | 1.27         |
|                    | 7.50                                                                                   |                                  |              | 3.28         |
|                    | 8.69                                                                                   |                                  |              | 4.98         |
| 45.5               | 4.95                                                                                   |                                  | 0.06         | 1.78         |
|                    | 5.92                                                                                   |                                  | 0.25         | 3.63         |
|                    | 7.46                                                                                   |                                  | 0.64         | 9.54         |
| 50.0               | 8.65                                                                                   |                                  | 0.90         | 13.00        |
| 50.2               | 4.93                                                                                   |                                  |              | 2.67<br>7.56 |
|                    | 5.90<br>7.45                                                                           |                                  |              | 14.00        |
|                    | 8.63                                                                                   |                                  |              | 19.30        |
| 52.3               | 4.93                                                                                   | 0.126                            |              | 19.50        |
|                    | 5.90                                                                                   | 0.222                            |              |              |
|                    | 7.31                                                                                   | 0.389                            |              |              |
|                    | 8.57                                                                                   | 0.558                            |              |              |
| 55.5               | 4.96                                                                                   |                                  | 0.33         |              |
|                    | 6.20                                                                                   |                                  | 0.80         |              |
|                    | 7.40                                                                                   |                                  | 1.80         |              |
|                    | 8.64                                                                                   |                                  | 2.54         |              |
| 57.8               | 4.92                                                                                   | 0.275                            | 0.364        | 6.70         |
|                    | 5.89                                                                                   | 0.51                             | 1.20         | 15.30        |
|                    | 7.43                                                                                   | 0.865                            | 2.10         | 27.00        |
| 60.1               | 8.60                                                                                   | 1.07                             | 3.20         | 38.30        |
| 60.1               | 4.96                                                                                   | 0.33                             | 0.60         |              |
|                    | 6.19                                                                                   | 0.55                             | 1.23         |              |
|                    | 7.39<br>8.61                                                                           | 1.00<br>1.30                     | 2.47<br>3.83 |              |
| 65.1               | 8.01<br>4.94                                                                           | 1.30                             | 3.83<br>1.06 |              |
|                    | 6.17                                                                                   |                                  | 1.82         |              |
|                    | 7.37                                                                                   |                                  | 4.14         |              |
|                    | 8.58                                                                                   |                                  | 5.93         |              |
| 70.2               | 4.89                                                                                   | 1.06                             | 3.73         |              |
|                    | 5.86                                                                                   | 1.42                             |              |              |
|                    | 7.24                                                                                   | 3.24                             |              |              |
|                    | 8.49                                                                                   | 3.36                             |              |              |
| 79.2               | 4.87                                                                                   | 2.19                             |              |              |
|                    | 5.83                                                                                   | 2.96                             |              |              |
|                    | 7.21                                                                                   | 5.71                             |              |              |
|                    | 8.46                                                                                   | 7.10                             |              |              |

<sup>&</sup>lt;sup>a</sup> Values corrected at the various temperatures.<sup>1</sup>

crowding effect occurs at the carbonyl carbon atom. In fact, in the course of the reaction, the electronic character of the carbonyl carbon changes from sp<sup>2</sup> to sp<sup>3</sup>, hence the increasing bulkiness of the amide function should reduce its reactivity owing to the increased crowding in the transition state. In contrast, for the investigated amides 1a-d the reverse is true, i.e. the more crowded substrate (1d) showed a higher reactivity. We believe that the rate decrease on going from 1d to 1a is probably due to the hyperconjugative effect<sup>9</sup> of  $\alpha$ -hydrogens to the carbonyl, i.e. an increase in the number of these hydrogens causes a decrease in the observed rate constant. Actually, the replacement of a hydrogen atom with a CH<sub>3</sub> group has a destabilizing effect on the protonated substrate with respect to the transition state giving rise to a decrease in the activation energy.

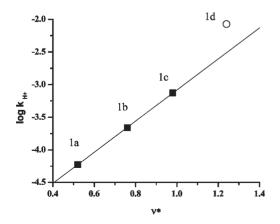
By plotting  $\Delta H^{\neq}$  vs  $\Delta G^{\neq}$  of **1a-d** in a statistical weight-meaningful form, for **1d** a significant positive deviation from the linear regression concerning the isokinetic relationship (IKR) was observed (Fig. 3). Because a linear relationship between  $\Delta H^{\neq}$  and  $\Delta G^{\neq}$  generally means that only one reaction mechanism is present, the observation of significant scattering could suggest that **1d** reacts by a different mechanism <sup>10,11</sup> to the other substrates investigated.

Similarly, the rate increase (about 3.2-fold) for **1d** with respect to the expected value suggests the same hypothesis. This is in agreement with the lower acidity of the conjugate acid of **1d** (p $K_{SH^+}$ = -3.35) compared with the value extrapolated from the correlation in Fig. 2 (p $K_{SH^+}$ = -4.22). This suggests that the protonation mainly occurs at the ether position, probably owing to the increased steric interference of the *tert*-butyl group with solvation.<sup>12</sup>

With this mechanistic hypothesis, the carbonyl oxygen atom would perform a nucleophilic attack on the carbon adjacent to the protonated —OCH<sub>3</sub> fragment. This would lead to the expulsion of a CH<sub>3</sub>OH molecule (Scheme 2). This attack should occur with a higher rate, as indicated by the activation parameters in Table 2. We believe that this mechanism gives a sterically less strained transition state. In fact, the intermediate **II** is a five-membered cyclic carbocation where the angle between the *tert*-butyl carbon atom and N is 120°, i.e. greater than in the five-membered cyclic oxonioun intermediate **I** proposed in the mechanism described in Scheme 1.

**Table 2.** Thermodynamic activation parameters for the acid hydrolysis of **1a**–**d**<sup>a</sup>

| Substrate 1                                                                             | $\Delta G^{\neq} (\mathrm{kcal}  \mathrm{mol}^{-1})$        | $\Delta H^{\neq} (\mathrm{kcal}  \mathrm{mol}^{-1})$                 | $\Delta S^{\neq} (\text{cal mol}^{-1}  \text{K}^{-1})$                                         | $T\Delta S^{\neq} (\text{kcal mol}^{-1})$                      |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| (1a) $R = CH_3^b$<br>(1b) $R = C_2H_5$<br>(1c) $R = CH(CH_3)_2$<br>(1d) $R = C(CH_3)_3$ | $25.8 \pm 1.5$ $24.9 \pm 0.7$ $24.1 \pm 0.5$ $22.4 \pm 0.7$ | $23.3 \pm 1.0$<br>$20.5 \pm 0.5$<br>$19.0 \pm 0.4$<br>$18.1 \pm 0.5$ | $\begin{array}{c} -7.6 \pm 3.2 \\ -13.5 \pm 1.6 \\ -15.7 \pm 1.1 \\ -13.4 \pm 1.6 \end{array}$ | $-2.5 \pm 1.0 \\ -4.4 \pm 0.5 \\ -5.1 \pm 0.4 \\ -4.3 \pm 0.5$ |


<sup>&</sup>lt;sup>a</sup> Calculated at 50°C from the k<sub>H+</sub> values.

This hypothesis is strengthened by the  $\Delta S$  value of  $1\mathbf{d}$  in comparison with  $1\mathbf{c}$ . The  $\Delta G^{\neq}$  decrease for  $1\mathbf{d}$  with respect to  $1\mathbf{c}$  is due to an increase in both  $\Delta H^{\neq}$  (0.9 kcal mol<sup>-1</sup>) and  $T\Delta S^{\neq}$  (0.8 kcal mol<sup>-1</sup>) (1 kcal = 4.184 kJ). In contrast, the  $\Delta G^{\neq}$  decrease on going from  $1\mathbf{a}$  to  $1\mathbf{c}$  is exclusively due to the  $\Delta H^{\neq}$  increase, the  $T\Delta S^{\neq}$  increase (from -2.5 to 5.1 kcal mol<sup>-1</sup>) being unfavourable.

The reaction path in Scheme 2 should be favoured over that in Scheme 1 because in the former case the intermediate **II** which forms in the rate-determining step is clearly stabilized by resonance. The intermediate **II** can be described by three resonance structures which indicate that the positive charge is delocalized among sp<sup>2</sup> carbon, oxygen and nitrogen atoms and that the intermediate has a tertiary carbocation character. Conversely, a similar stabilization cannot be recognized in intermediate **I**, where the positive charge is frozen on the oxygen atom.

The cross-over from the mechanism in Scheme 1 to that in Scheme 2 can be ascribed at least in part to the different protonation of substrate 1d in comparison with 1a-c. However, we do not exclude the possibility that the mechanism in Scheme 2 can operate also with the 1c derivative, at least in part.

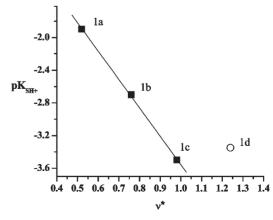
In conclusion, we believe that the relevant rate increase observed on going from **1a** to **1d** can be reasonably ascribed to the hyperconjugative effect on the protonated substrate (i.e. the reacting species). For **1d** the increase in the steric hindrance near to the C=O is an important factor which favours the change in the reaction mechanism.



**Figure 1.** Log  $k_{\rm H^+}$  (mol<sup>-1</sup> s<sup>-1</sup>) vs  $\nu^*$  for the acid hydrolysis of **1a–c** at 57.8 °C

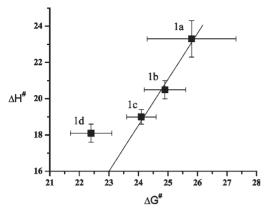
We emphasize that the effectiveness of the neighbouring amide group assistance in the acid hydrolysis of **1d** is remarkable. In fact, the ratio between the second-order rate constants  $(k_{\text{H}^+})$  of **1d**, calculated at 69.9 °C from thermodynamic activation parameters, and of the reference compound without the amide function, already reported, <sup>1</sup> is about  $3 \times 10^5$ .

## **EXPERIMENTAL**


#### General

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded with a Varian Gemini 300 (300 MHz) instrument using CDCl<sub>3</sub> as solvent. Chemical shifts are in ppm relative to CDCl<sub>3</sub> and the coupling constants (*J*) are in hertz. UV spectra and kinetic measurements were recorded on a Perkin-Elmer Lambda 6 spectrophotometer. IR spectra were recorded on a Nicolet 210 spectrophotometer.

The products were analysed by using a Hewlett-Packard Model 1100 liquid chromatograph—single-quadrupole mass-selective detector system, with an atmospheric pressure chemical ionization—electrospray interface, using a Zorbax Eclipse XDB-C8 column.


## **Products**

General procedure for the synthesis of **1b-d**. The products were obtained starting from 6-ethyl-o-toluidine and



**Figure 2.** p $K_{SH^+}$  of **1a–c**, at 25 °C vs  $\nu^*$ 

<sup>&</sup>lt;sup>b</sup> From kinetic data reported in Ref. 1.



**Figure 3.**  $\Delta H^{\neq}$  vs  $\Delta G^{\neq}$  (kcal mol<sup>-1</sup>) for the acid hydrolysis of **1a–c** 

( $\pm$ )-ethyl 2-bromopropionate and following the procedure already used to synthesize the analogous substrate  ${\bf 1a}$ . After purification by silica gel chromatography, eluting with hexane–ethyl acetate, the pure products were isolated as an oil in 65–70% overall yield.

*N*-(2-Ethyl-6-methylphenyl)-*N*-(methoxyprop-2-yl)propanamide (*1b*). <sup>1</sup>H NMR, δ 1.0 (t, 3H, J = 7.4); 1.05–1.15 (2d, 3H, J = 5); 1.25 (t, 3H, J = 7.5); 1.8 (m, 2H); 2.2 (2s, 3H); 2.5 (m, 2H); 3.3 (2s, 3H); 3.45 (2dd, 1H, J = 7.2, 9.3); 3.65–3.8 (2dd, 1H, J = 3.9, 9.3); 4.25 (m, 1H); 7.12 (m, 3ArH). <sup>13</sup>C NMR, δ 8.9, 13.6, 13.9, 15.3, 15.5, 18.5, 23.2, 23.5, 27.5, 27.6, 53.7, 53.9, 58.1, 74.9, 126.1, 126.2, 127.7, 128.2, 136.5, 136.6, 138.3, 142.1, 142.2, 174.1. IR (thin film):  $\nu$  = 1659.8 cm<sup>-1</sup> (C=O). HPLC-MS: m/z 264.2 (M<sup>+</sup> + 1), 286.2 (M<sup>+</sup> + Na).

*N*-(2-Ethyl-6-methylphenyl)-*N*-(methoxyprop-2-yl)-2-methylpropanamide (**1c**). <sup>1</sup>H NMR, δ 0.95 (m, 6H); 1.05–1.15 (2d, 3H, J=7); 1.23 (m, 3H); 2.1 (m, 1H); 2.2 (2s, 3H); 2.55 (m, 2H); 3.25–3.3 (2s, 3H); 3.5 (dd, 1H, J=8.7, 9.3); 3.65–3.8 (2dd, 1H, J=3.9, 9.3); 4.1 (m, 1H); 7.1 (m, 3ArH). <sup>13</sup>C NMR, δ 13.6, 14, 15.4, 15.7, 18.7, 18.9, 19, 19.5, 19.6, 19.7, 19.8, 23.3, 23.5, 32, 54.3, 54.6, 58.3, 75.1, 126, 126.2, 127.7, 127.8, 128.4, 136.5, 136.7, 138.7, 142.2, 142.3, 178.4. IR (thin film):  $\nu$  = 1655.8 cm  $^{-1}$  (C=O). HPLC-MS: m/z 278.2 (M<sup>+</sup> + 1), 300.2 (M<sup>+</sup> + Na).

*N-*(2-Ethyl-6-methylphenyl)-*N-*(methoxyprop-2-yl)-2,2-dimethylpropanamide (**1d**).  $^{1}$ H NMR,  $\delta$  0.92 (s, 9H);

1.08–1.15 (2d, 3H, J=7); 1.25 (2t, 3H, J=7.2); 2.2–2.3 (2s, 3H); 2.6 (m, 2H); 3.3 (2s, 3H); 3.55 (2dd, 1H, J=7.4, 9.3); 3.7 (2dd, 1H, J=3.6, 9.3); 3.95 (m, 1H); 7.1 (m, 3ArH); <sup>13</sup>C NMR,  $\delta$  13.4, 13.8, 15.3, 15.6, 19.2, 19.4, 23.7, 29, 29.1, 41.6, 41.7, 56.9, 57.5, 58.4, 75.5, 75.6, 125.7, 125.8, 127.7, 127.8, 128, 128.1, 136.9, 137.3, 140, 140.1, 142.5, 142.7, 178.7, 178.8. IR (thin film):  $\nu$ =1634.6 cm<sup>-1</sup> (C=O). HPLC-MS: m/z 292.2 (M<sup>+</sup>+1), 314.2 (M<sup>+</sup>+Na).

3-(2-Ethyl-6-methylphenyl)-2-ethyl-2-hydroxy-4-methyloxazolidine (**2b**). This it was obtained by subjecting **1b** to hydrolysis in 5 M HCl at 80 °C. After about 1 h, the reaction mixture was evaporated to dryness *in vacuo* and the oily residue was pure by TLC analysis. <sup>1</sup>H NMR, δ 1 (t, 3H, J = 7.4); 1.1–1 .2 (2d, 3H, J = 6.6); 1.25 (t, 3H, J = 7.6); 1.8 (m, 2H); 2.2 (2s, 3H); 2.4–2.65 (m, 2H); 3.62 (m, 1H); 4–4.25 (m, 2H); 7.05–7.4 (m, 3ArH). <sup>13</sup>C NMR, δ 8.8, 13.5, 14, 14.8, 15, 18.4, 18.7, 23.4, 27.5, 46.8, 46.9, 56.1, 56.6, 126.4, 128, 128.5, 135.9, 136.2, 137.8, 141.7, 141.8, 174.2, 174.3. IR (thin film):  $\nu$  = 3440 cm<sup>-1</sup> (broad, OH). HPLC–MS: m/z 250.2 (M<sup>+</sup> + 1), 272.2 (M<sup>+</sup> + Na).

3-(2-Ethyl-6-methylphenyl)-2-hydroxy-2-isopropyl-4-methyloxazolidine (**2c**). This was obtained by subjecting **1c** to hydrolysis in 5 M HCl at 70 °C for about 2 h. The reaction mixture was evaporated to dryness *in vacuo* and the oily residue was pure by TLC analysis. <sup>1</sup>H NMR, δ 0.97 (m, 6H); 1.25 (m, 6H); 2–2.25 (m, 1H); 2.2–2.3 (2s, 3H); 2.55 (m, 2H); 3.7 (m, 1H); 3.95–4.2 (m, 2H); 7.15 (m, 3ArH). <sup>13</sup>C NMR, δ 13.7, 14.2, 15.1, 15.4, 19, 19.2, 19.5, 19.7, 19.8, 19.9, 23.6, 32.1, 47.3, 57.1, 57.7, 57.8, 126.5, 126.6, 128, 128.2, 128.3, 128.8, 136.5, 138.4, 142, 142.1, 178.6. IR (thin film):  $\nu$  = 3459 cm <sup>-1</sup> (broad, OH). HPLC–MS: m/z 264.2 (M<sup>+</sup> + 1), 286.2 (M<sup>+</sup> + Na).

3-(2-Ethyl-6-methylphenyl)-2-hydroxy-4-methyl-2-tert-butyloxazolidine (**2d**). This was obtained by subjecting **1d** to hydrolysis in 5 M HCl at 60 °C for about 0.5 h. The reaction mixture was evaporated to dryness *in vacuo* and the oily residue was pure by TLC analysis. <sup>1</sup>H NMR, δ 1.2 (3s, 9H); 1.3–1.35 (2t, 3H, J = 7.4); 1.44 (2d, 3H, J = 6.5); 2.35–2.45 (2s, 3H); 2.52–2.82 (m, 1H); 4.95 (m, 1H); 5.1–5.35 (m, 1H); 5.9 (m, 1H); 7.3 (m, 3ArH). <sup>13</sup>C NMR, δ 13.3, 14, 15.4, 15.9, 18.4, 19.2, 23.4, 23.7,

Scheme 2

26.9, 36.8, 36.9, 64, 64.9, 77.2, 126.6, 127.2, 129, 129.1, 129.3, 129.4, 130.8, 134.1, 135.2, 140, 140.7, 182.8. IR (thin film):  $\nu = 3465 \text{ cm}^{-1}$  (broad, OH). HPLC–MS: m/z 278.2 (M<sup>+</sup> + 1), 300.2 (M<sup>+</sup> + Na).

# Kinetic experiments

The acid hydrolysis was followed spectrophotometrically, as described previously, by measuring the change in optical density (OD) at 266 nm for substrates **1b** and **1c** and at 240 nm for **1d**. The reactions follow a pseudofirst-order law over at least 90% of reaction. The kinetics were measured in duplicate runs and the mean value was reported. The rate constants  $(k_{\text{obs}})$  were obtained from the equation  $OD_t = OD_0 + (OD_{\infty} - D_0)[1 - \exp(-tk_{\text{obs}})]$  by plotting at least 200 values of OD with a non-linear least-squares routine (FigP6.0 program, Biosoft) and very good to excellent plots were always obtained. After completion of the reaction, after about 10 half-lives, the products were identified by mass spectrometry by comparison with reference compounds **2b–d** obtained as reported above.

## pK<sub>SH+</sub> measurement

The p $K_{\rm SH^+}$  values of substrates **1b–d** were measured spectrophotometrically at 25 °C in HCl solutions following the protocol reported previously.<sup>3</sup> The OD values of protonated species were measured in 10 M HCl. Since the hydrolysis of **1d** proceeds significantly also at room temperature, the absorbance was recorded as a

function of time and extrapolated to t = 0. The p $K_{SH^+}$  values, calculated from the equation p $K_{SH^+} = H_0 + n\log([SH^+]/[S])$ , are -2.7 (n = 0.74) for **1b**, -3.5 (n = 0.41) for **1c** and -3.35 (n = 1.82) for **1d**.

## Acknowledgement

Financial support from the University of Bologna, 'Ricerca fondamentale orientata' (ex. 60%) is gratefully acknowledged.

#### REFERENCES

- Arcelli A, Porzi G, Sandri S. Tetrahedron 1995; 51: 9729–9736 and references cited therein.
- Arcelli A, Papa M, Porzi G, Sandri S. Tetrahedron 1997; 53: 10513–10516.
- Arcelli A, Porzi G, Rinaldi S, Sandri S. J. Chem. Soc., Perkin Trans. 2 2001; 296–301.
- Arcelli A, Cecchi R, Porzi G, Rinaldi S, Sandri S. Tetrahedron 2001: 57: 4039–4043.
- Arcelli A, Cecchi R, Porzi G, Rinaldi S, Sandri S. Tetrahedron 2001; 57: 6843–6846.
- Arcelli A, Paradisi F, Porzi G, Rinaldi S, Sandri S. J. Chem. Res. 2002; (S) 199, (M) 501.
- 7. Charton M. J. Org. Chem. 1979; 44: 903-906.
- Chuchani G, Dominguez RM. Int. J. Chem. Kinet. 1981; 13: 577–589.
- 9. Grob CA, Rich R. *Tetrahedron Lett.* 1978; **7**: 663–666, and references cited therein.
- 10. Linert W. Chem. Soc. Rev. 1989; 18: 477-555.
- 11. Linert W. Chem. Soc. Rev. 1994; 23: 429-438.
- Lowry TH. Schueller Richardson K. Mechanism and Theory in Organic Chemistry. Harper and Row: New York, 1987; 308.